Synaptic regulation of microtubule dynamics in dendritic spines by calcium, F-actin, and drebrin.
نویسندگان
چکیده
Dendritic spines are actin-rich compartments that protrude from the microtubule-rich dendritic shafts of principal neurons. Spines contain receptors and postsynaptic machinery for receiving the majority of glutamatergic inputs. Recent studies have shown that microtubules polymerize from dendritic shafts into spines and that signaling through synaptic NMDA receptors regulates this process. However, the mechanisms regulating microtubule dynamics in dendrites and spines remain unclear. Here we show that in hippocampal neurons from male and female mice, the majority of microtubules enter spines from highly localized sites at the base of spines. These entries occur in response to synapse-specific calcium transients that promote microtubule entry into active spines. We further document that spine calcium transients promote local actin polymerization, and that F-actin is both necessary and sufficient for microtubule entry. Finally, we show that drebrin, a protein known to mediate interactions between F-actin and microtubules, acts as a positive regulator of microtubule entry into spines. Together these results establish for the first time the essential mechanisms regulating microtubule entry into spines and contribute importantly to our understanding of the role of microtubules in synaptic function and plasticity.
منابع مشابه
Drebrin A regulates dendritic spine plasticity and synaptic function in mature cultured hippocampal neurons.
Drebrin A, one of the most abundant neuron-specific F-actin-binding proteins, is found exclusively in dendrites and is particularly concentrated in dendritic spines receiving excitatory inputs. We investigated the role of drebrin A in synaptic transmission and found that overexpression of drebrin A augmented the glutamatergic synaptic transmission, probably through an increase of active synapti...
متن کاملThe role of drebrin in dendritic spines
Dendritic spines form typical excitatory synapses in the brain and their shapes vary depending on synaptic inputs. It has been suggested that the morphological changes of dendritic spines play an important role in synaptic plasticity. Dendritic spines contain a high concentration of actin, which has a central role in supporting cell motility, and polymerization of actin filaments (F-actin) is m...
متن کاملPotential Role of Drebrin A, an F-Actin Binding Protein, in Reactive Synaptic Plasticity after Pilocarpine-Induced Seizures: Functional Implications in Epilepsy
Several neurological disorders characterized by cognitive deficits, including Alzheimer's disease, down syndrome, and epilepsy exhibit abnormal spine density and/or morphology. Actin-based cytoskeleton network dynamics is critical for the regulation of spine morphology and synaptic function. In this paper, I consider the functions of drebrin A in cell shaping, spine plasticity, and synaptic fun...
متن کاملDrebrin contains a cryptic F-actin–bundling activity regulated by Cdk5 phosphorylation
Drebrin is an actin filament (F-actin)-binding protein with crucial roles in neuritogenesis and synaptic plasticity. Drebrin couples dynamic microtubules to F-actin in growth cone filopodia via binding to the microtubule-binding +TIP protein EB3 and organizes F-actin in dendritic spines. Precisely how drebrin interacts with F-actin and how this is regulated is unknown. We used cellular and in v...
متن کاملRole of actin cytoskeleton in dendritic spine morphogenesis.
Dendritic spines are the postsynaptic receptive regions of most excitatory synapses, and their morphological plasticity play a pivotal role in higher brain functions, such as learning and memory. The dynamics of spine morphology is due to the actin cytoskeleton concentrated highly in spines. Filopodia, which are thin and headless protrusions, are thought to be precursors of dendritic spines. Dr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 33 42 شماره
صفحات -
تاریخ انتشار 2013